Exercise 35

A 1-kilogram ($1-\mathrm{kg}$) mass located at the origin is suspended by ropes attached to the two points $(1,1,1)$ and $(-1,-1,1)$. If the force of gravity is pointing in the direction of the vector $-\mathbf{k}$, what is the vector describing the force along each rope? [Hint: Use the symmetry of the problem. A 1 -kg mass weighs 9.8 newtons (N).]

Solution

Let the tension in each rope be \mathbf{T}_{1} and \mathbf{T}_{2} as shown below.

Each one can be written as its respective magnitude multiplied by a unit vector in the rope's direction.

$$
\begin{aligned}
& \mathbf{T}_{1}=\left\|\mathbf{T}_{1}\right\| \hat{\mathbf{u}}=\left\|\mathbf{T}_{1}\right\| \frac{(-1-0) \hat{\mathbf{x}}+(-1-0) \hat{\mathbf{y}}+(1-0) \hat{\mathbf{z}}}{\sqrt{(-1-0)^{2}+(-1-0)^{2}+(1-0)^{2}}}=\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}(-1,-1,1) \\
& \mathbf{T}_{2}=\left\|\mathbf{T}_{2}\right\| \hat{\mathbf{v}}=\left\|\mathbf{T}_{2}\right\| \frac{(1-0) \hat{\mathbf{x}}+(1-0) \hat{\mathbf{y}}+(1-0) \hat{\mathbf{z}}}{\sqrt{(1-0)^{2}+(1-0)^{2}+(1-0)^{2}}}=\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}(1,1,1)
\end{aligned}
$$

Apply Newton's second law to the mass.

$$
\sum \mathbf{F}=m \mathbf{a}
$$

The right side is zero because it's in static equilibrium.

$$
\sum F=0
$$

Substitute the forces on the left side. Here \mathbf{F}_{g} is the force due to gravity.

$$
\begin{gathered}
\mathbf{T}_{1}+\mathbf{T}_{2}+\mathbf{F}_{g}=\mathbf{0} \\
\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}(-1,-1,1)+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}(1,1,1)+(0,0,-m g)=\mathbf{0}
\end{gathered}
$$

Combine the vectors on the left side.

$$
\begin{gathered}
\left(-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}},-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}, \frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}\right)+\left(\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}, \frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}, \frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}\right)+(0,0,-m g)=(0,0,0) \\
\left(-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}},-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}, \frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}-m g\right)=(0,0,0)
\end{gathered}
$$

Match the components on both sides to get a system of equations.

$$
\begin{array}{r}
-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}=0 \\
-\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}=0 \\
\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}+\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}-m g=0
\end{array}
$$

Solving it yields

$$
\left\|\mathbf{T}_{1}\right\|=\frac{\sqrt{3}}{2} m g \quad \text { and } \quad\left\|\mathbf{T}_{2}\right\|=\frac{\sqrt{3}}{2} m g
$$

Therefore,

$$
\begin{aligned}
& \mathbf{T}_{1}=\frac{\left\|\mathbf{T}_{1}\right\|}{\sqrt{3}}(-1,-1,1)=\frac{m g}{2}(-1,-1,1) \\
& \mathbf{T}_{2}=\frac{\left\|\mathbf{T}_{2}\right\|}{\sqrt{3}}(1,1,1)=\frac{m g}{2}(1,1,1) .
\end{aligned}
$$

